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We investigate the symmetry of magnetoconductance fluctuations of phase-coherent, two-terminal quantum
dots in the nonlinear regime of transport. Specifically, we consider open, ballistic quantum dots �electron
billiards� with and without symmetry axes parallel and perpendicular to the current direction and formulate a
set of novel symmetry relations not observed in devices with lower symmetry. We experimentally confirm
these relations, demonstrating that high-quality materials and modern semiconductor technology allow the
fabrication of devices with almost perfect symmetry. Small deviations from the intended symmetry, presum-
ably due to impurities and fabrication limitations, do exist and can be detected. We also take into account
circuit-induced asymmetries of the measured conductance due to bias-dependent depletion and demonstrate
that this effect can be experimentally distinguished from rectification effects that are due to a lack of device
symmetry. Some open questions regarding the role of a magnetic field in the nonlinear regime of transport are
highlighted.
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I. INTRODUCTION

Modern fabrication techniques allow us to fabricate me-
soscopic semiconductor devices with well-defined geometry.
In the ballistic transport regime, where the electron mean
free path exceeds the device size, the device shape is known
to have a significant influence on the transport properties.1 In
particular, the electronic properties of open quantum dots—
that is, ballistic electron cavities in the phase-coherent trans-
port regime—are explained in terms of the dot geometry.2–7

However, while most previous studies were concerned with
the linear response regime of transport much less attention
has been paid to the nonlinear regime of transport and even
less to the effect of magnetic fields in the nonlinear regime.

In the nonlinear regime of transport, electric conductance
is—by definition—a function of the applied source-drain
bias voltage. If the system is spatially asymmetric, the non-
linear conductance is in general not symmetric with respect
to zero bias voltage. A net current is then generated by an
ac-bias voltage, even when the bias is zero on time average.
Such a rectification effect can, for instance, be observed in
nature where the microscopically broken symmetry of cer-
tain crystals leads to the so-called photogalvanic effect.8 A
related effect has recently been demonstrated in artificial,
ballistic antidot structures with designed asymmetry9–12 and
was demonstrated to be potentially useful for room-
temperature, high-frequency applications.13,14

In the phase-coherent regime of transport, where conduc-
tance fluctuations due to wave interference are observed,
nonlinear rectification was first observed in disordered, me-
soscopic conductors in which symmetry was absent due to
the random distribution of impurities.15–19 Taylor et al. used
for the first time ballistic cavities with intentionally high and
low symmetry to experimentally establish reciprocity rela-

tions of magnetoconductance fluctuations in the linear re-
sponse regime.6,7 In more recent studies, we have investi-
gated nonlinear rectification in intentionally asymmetric
�triangular� quantum dots.20,21 We found that the phase-
coherent, nonlinear conductance was not symmetric because
of the effect of an electric field on the wave interference
inside the dot. Therefore, the observed nonsymmetry of the
conductance is sensitively dependent on any parameter that
shifts the electron phase, such as the amplitude of the applied
bias, a small magnetic field, the device shape, or the Fermi
energy. In these previous studies, we thus established the
presence of rectification related to wave interference effects
in devices lacking a symmetry axis with respect to the cur-
rent direction.

Recently renewed interest in the symmetry of nonlinear
conductance fluctuations focused on the role of magnetic
field, in ballistic22–26 and disordered27 systems, including the
high-magnetic-field regime.28–30 Our own collaboration ex-
perimentally demonstrated the existence of magnetic-field
asymmetries of the conductance in two-terminal quantum
dots and established a set of symmetry relations for the non-
linear magnetoconductance in quantum dots with symmetry
axes perpendicular and/or parallel to the current direction.22

Here, we expand on our previous results and report a
more comprehensive investigation of these symmetry rela-
tions. Specifically, we investigate and compare devices fab-
ricated from InP/InGaAs as well as GaAs/AlGaAs hetero-
structures, using both wet etching and surface gates, and we
take into account bias-dependent depletion, both when for-
mulating expected symmetry relations and in the analysis of
experiments. We also use direct measurements of the net
current to compare the degree of asymmetry in different de-
vices.

We distinguish three sources of nonsymmetries in the
nonlinear, phase-coherent conductance: first, the intentional

PHYSICAL REVIEW B 73, 235321 �2006�

1098-0121/2006/73�23�/235321�14� ©2006 The American Physical Society235321-1

http://dx.doi.org/10.1103/PhysRevB.73.235321


dot geometry—that is, the designed device symmetry with
respect to the current direction. Second, we consider unin-
tentional deviations from this geometry, such as small litho-
graphic imperfections or impurities. Third, even a perfectly
symmetric device may yield nonlinear rectification if placed
in an asymmetric circuit. The origin of this effect is a bias-
voltage-induced depletion gradient along the device. We
demonstrate how this circuit-induced asymmetry can be dis-
tinguished experimentally from rectification due to the de-
vice shape.

The paper is structured as follows. In Sec. II we formulate
a number of novel symmetry relations for the conductance in
the nonlinear regime, with and without magnetic field, for
quantum dots with symmetry axes parallel and perpendicular
to the current direction. We distinguish between “nonrigid”
devices, in which circuit-induced asymmetries of the con-
ductance are significant, and “rigid” devices where this is not
the case. Our devices and experimental techniques are de-
scribed in Sec. III, and experimental results are presented in
Sec. IV. Experiments are carried out in the regime of mag-
netic fields B��0 /A, where �0=h /e is the magnetic flux
quantum and A is the device area, and for bias voltages
larger than the characteristic energy scale �typically in the
order of 10 �eV in open quantum dots�. Magnetoconduc-
tance fluctuations obtained from devices that are not notably
sensitive to circuit-induced asymmetries convincingly con-
firm all predicted symmetry relations and demonstrate that
quantum dots can be fabricated with almost perfect symme-
try. Averaging over many conductance fluctuations, which
allows a quantitative comparison of the rectification ob-
served in different devices, is carried out efficiently by direct
measurement of the net current. We apply this technique to
devices that are subject to circuit-induced asymmetries and
show that this effect can be separated from rectification due
to the actual device symmetry. We also study the asymmetry
of triangular cavities as a function of magnetic field, which
leads us to highlight, in Sec. V, some open questions regard-
ing the role of a magnetic field in the nonlinear regime of
transport.

II. CONDUCTANCE SYMMETRIES AS A FUNCTION OF
DEVICE SYMMETRY

A. Basic symmetry relations

The linear response regime is defined by a conductance G,
which does not depend on the applied source-drain voltage
�denoted V and, from now on, referred to as the bias volt-
age�. Regardless of the device symmetry, the current is then
symmetric in voltage—that is, I�V�=−I�−V�. In the nonlinear
regime, when the bias voltage is larger than the energy
scale on which the device conductance varies,31 G varies
with the bias voltage. In the general nonlinear case, where a
device has no microscopic symmetry �as is the case in a
small disordered conductor�, the phase-coherent conductance
is not symmetric with respect to zero bias voltage,
G�V��G�−V�.15–21,32–34 Such a device acts as a rectifier, and
an average net current Inet=0.5�I�V0�+ I�−V0�� is generated
when a square wave of amplitude V0 is applied to the device.

Consider, however, a ballistic device that has a symmetry
axis perpendicular to the current direction �Figs. 1�a� and
1�c��. We refer to such devices as left-right �LR� symmetric.
A perfectly LR-symmetric device, placed into a symmetric
experimental setup, does not generate any net current, be-
cause it is affected in exactly the same way by a positive and
a negative bias voltage �cf. Fig. 2�a��. Hence the nonlinear
conductance is symmetric with respect to zero bias voltage:
G�V�=G�−V�.

Let us now consider the effect of a magnetic field B,
perpendicular to the device plane. In linear response, the
four-terminal resistance obeys the reciprocity relation
R12,34�B�=R34,12�−B�.35,36 Here, R12,34 is the four-terminal re-
sistance measured in a configuration where the current flows
from contact 1 to 2 and the voltage drop is measured be-
tween contacts 3 and 4. In the following we limit ourselves
to two-terminal devices and will discuss the conductance,
which is the quantity measured in the experiments, rather
than the resistance. For the special case of two-terminal de-
vices, the reciprocity relation yields G12�B�=G12�−B�, where
G12�B�=1/R12,12�B�. Hence, the conductance is symmetric
with respect to B=0. This general result is true in the linear
response regime, regardless of the device symmetry. In the
nonlinear regime, this relation does not hold1,31 and, in gen-
eral, the two-terminal conductance is not symmetric in B:

G12�V,B� � G12�V,− B� . �1�

However, using simple symmetry arguments we can see that
the symmetry in B still holds for devices with a symmetry
axis parallel to the current20—so-called up-down- �UD-�
symmetric devices �Figs. 1�a� and 1�b��. The symmetry of
the electrical potential implies conductance symmetry in B:

G12�V,B� = G12�V,− B� . �2�

This fundamental symmetry argument can be illustrated by
considering classical electron trajectories �see Fig. 1�b��, the
interference of which, in a semiclassical interpretation, leads
to magnetoconductance fluctuations. In this picture, the elec-
trons entering the dot from one side bend upwards for posi-
tive magnetic field and downwards for negative field.22 If the
device is perfectly UD symmetric, the trajectories will sim-
ply be mirrored about the horizontal axis and the transmis-
sion probability will be the same in both cases. As will be
shown below, this symmetry relation is useful for experimen-
tal tests of the UD symmetry of a device.

FIG. 1. Symmetry of G�V ,B� in rigid devices with �a� both UD
�up-down� and LR �left-right� symmetry, �b� UD symmetry, but no
LR symmetry, and �c� LR symmetry, but no UD symmetry.
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In the context of the semiclassical argument used in the
preceding paragraph, it is important to note that the symme-
try arguments presented throughout this paper are fundamen-
tal and do not make any assumptions about the actual physi-
cal mechanism that causes the nonlinear terms of the
conductance. For instance, a finite contribution of electron-
electron interaction to this nonlinearity, as considered in
Refs. 27 and 23 for B��0 /A and bias smaller than the
Thouless energy, requires the same spatial scattering or ca-
pacitive asymmetry as illustrated in Fig. 1�c�23

B. Symmetry relations in the presence of circuit-induced
asymmetry

Strictly speaking, LR symmetry requires the entire experi-
mental setup to be perfectly symmetric with respect to the
device’s LR symmetry axis. One common reason for why a
particular setup may not be symmetric is the choice of ref-
erence point of the voltage applied to the gates that form
the device. Usually the gate voltage is defined with respect
to the drain reservoir, located at one side of the device, as
illustrated in Fig. 2�b�. In linear response, when only negli-
gible bias voltages are used, this circuit asymmetry is of no
consequence. When appreciable bias voltages are used, how-
ever, the resulting gradient in local electrochemical potential
along the device will deform the device potential in a way
that depends on the voltage sign �see Fig. 2�b��. Conse-
quently a nonsymmetric conductance will be measured:
G�V��G�−V�.37–39

We will refer to this effect as circuit-induced asymmetry
�CIA�. Specifically, we will use this expression to describe
any nonlinear behavior for which the grounding point of the
gates relative to source and drain is important. In the defini-
tion of this term we include any asymmetric nonlinear be-
havior observed in ideal, perfectly LR symmetric devices,
but we do not include rectification related solely to the in-
tentional or unintentional asymmetry of the actual device.

In the following, we will discuss how circuit-induced
asymmetry in a LR-symmetric device can be experimentally
distinguished from rectification due to the actual device
shape. To do so, we measure the device in both forward and
reverse directions by interchanging the connections of the
source and drain contacts. In particular, using a switch, we
physically swap the source and drain connections, while
keeping the drain contact as the reference point of the gate
voltage �see Fig. 2�b��.40 We let G12�V� denote the conduc-
tance with the device in the forward grounding configuration.
G21�V� denotes the conductance with the device in the re-
versed configuration �Fig. 2�b��. CIA is expected to be sig-
nificant only when the bias-induced potential gradient along
the device is comparable to the change in gate voltage �Vg�
required to cause an appreciable change in depletion—that
is, when �G /�V��G /�Vg.39 A device for which
�G /�Vg��G /�V �no CIA is observed� will be referred to as
rigid, while a device in which CIA is observed will be re-
ferred to as nonrigid. Symmetry relations for rigid and non-
rigid devices with and without LR symmetry will now be
presented.

1. Zero magnetic field
a. A rigid device with LR symmetry. A rigid, LR-

symmetric device is affected in the same way by a positive

FIG. 2. Illustration of the origin of nonsymmetry in V of a
quantum dot’s nonlinear conductance. �a� Electron transport across
a quantum dot without LR symmetry. The shape of the conductance
band edge inside the dot illustrates the effect of spatial confinement
inside the dot. The horizontal lines inside the dot indicate the modu-
lation of the density of states due to overlapping, broadened single-
electron states. Shading indicates the energy distribution functions
in the electron reservoirs forming the source �S� and drain �D�. Top:
for very small voltages �linear response� the transmission probabil-
ity �the conductance� is independent of the absolute value and the
sign of the voltage. Center and bottom: illustration of the nonlinear
response regime, where the potential and the electron states depend
on the applied voltage. When the potential is not inversion symmet-
ric, the electrical current flows via different sets of electronic states
for positive and negative voltage, and rectification is observed �Ref.
20� �b�. The effect of circuit asymmetry on a LR-symmetric chan-
nel. A bias voltage leads to a variation of the electrochemical po-
tential along the channel. Consequently the depletion due to the
gates and, therefore, the channel width vary along the channel. If
the drain is used as the reference point of the gate voltage, the
effective width varies more at the source side than at the drain side.
A positive and a negative bias voltage alters the channel in different
ways, resulting in a nonsymmetric nonlinear conductance. In our
setup we use switches to reverse the circuit orientation. Forward
grounding configuration �G12�V�� denotes that 1 is connected to a
and 2 to b; in reverse configuration �G21�V��, 1 is connected to b
and 2 to a. Symmetry relations of G12�V� and G21�V� for nonrigid
devices �see Table I� apply only when serial resistances �including
ohmic contacts and instrument impedances� are balanced such that
Ra=Rb and R1=R2.
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and a negative bias voltage and the nonlinear conductance is
symmetric around zero bias voltage: G12�V�=G12�−V�. Be-
cause of the symmetry of the device and because it is rigid,
the reversal of source and drain will not change the conduc-
tance: G12�V�=G21�V�.

b. A rigid device without LR symmetry. Next, let us con-
sider a rigid device lacking LR symmetry. The nonlinear
conductance is changed if we either reverse source and drain
or change the sign of the applied bias. However, if we
change the sign of the applied bias and reverse source and
drain, the same conductance is obtained. This observation
leads to the following relations:

G12�V� � G12�− V� �3�

and

G12�V� = G21�− V� . �4�

It follows from Eq. �4� that the antisymmetric part of the
conductance, GA�V�=0.5�G12�V�−G12�−V��, can also be ob-
tained by taking the difference of the conductance of the
device in the two grounding configurations:

G12�V� − G21�V� = 2GA�V� . �5�

GA�V� determines the net current observed when an ac volt-
age is applied to the device.

c. A nonrigid device with LR symmetry. For a nonrigid
LR-symmetric device, the circuit asymmetry yields a non-
symmetric nonlinear conductance

G12�V� � G12�− V� . �6�

However, reversing the grounding arrangement, in an other-
wise perfectly symmetric experimental setup �that is, R1

=R2 and Ra=Rb in Fig. 2�, will not change the conductance
and we expect

G12�V� = G21�V� . �7�

and

G12�V� − G21�− V� = 2GA�V� . �8�

As we will show later, the difference between relations �5�
and �8� can be used to experimentally distinguish between
circuit-induced asymmetric nonlinear behavior in a LR sym-
metric, nonrigid device and that caused by the absence of LR
symmetry in a rigid device.

d. A nonrigid device without LR symmetry. The situation
is more complicated for a nonrigid device without LR sym-
metry. In this case, there is no simple symmetry relation.
Thus, we have chosen to consider the conductance as con-
sisting of parts with different symmetry relations. The anti-
symmetric part of the conductance will contain one part that
is reversed when the grounding configuration is reversed
�Gr�V�, just as in a rigid device�, one part that is unchanged
�GCIA�V�, as expected for a nonrigid, LR symmetric device�,
and one part with no special relation. The total conductance
can then be expressed as G�V�=Gr�V�+GCIA�V�+Gx�V�,
where Gr fulfills relations �3�–�5�, GCIA obeys relations

�6�–�8�, and Gx is an additional term with no specific relation
between Gx

12 and Gx
21. By subtracting G21�V� from G12�V� we

obtain

G12�V� − G21�V� = 2Gr
A�V� + 0 + Gx

12�V� − Gx
21�V� . �9�

Significantly, GCIA has, by intention, disappeared—that is,
we have succeeded in removing the asymmetric part of the
nonlinear conductance originating from the circuit asymme-
try in a LR symmetric device. The remaining terms in Eq. �9�
are all related to the asymmetry of the device, and any con-
tribution to the antisymmetric conductance �and, thus, to rec-
tification� that would be present also in a LR-symmetric de-
vice has been removed. The fact that the circuit asymmetry
also generates a contribution to the nonlinear conductance
that differs between measurements in the two grounding con-
figurations, and is not subtracted, contributes to the conduc-
tion asymmetry in a device lacking LR symmetry.

2. Magnetic field

In zero magnetic field, a rigid device of arbitrary shape
fulfills Eq. �4�. In nonzero magnetic fields, this equation be-
comes

G12�V,B� = G21�− V,B� . �10�

This relation is illustrated in Fig. 3 �compare, for instance,
�A� and �G� or �C� and �E��.

If the rigid device is LR symmetric, the simpler relation

FIG. 3. Illustration, using classical electron orbits, of the sym-
metry relations for a rigid device in the nonlinear regime and in
finite magnetic fields. The upper row shows the device in forward
grounding configuration and the lower row in reversed configura-
tion, where the source is indicated by S and the location of the drain
is indicated by a grounding sign. A positive magnetic field is taken
to be into the page. A positive bias voltage in forward configuration
injects electrons through the right-hand opening. The difference in
gray shade illustrates that the potential of the device differs for
positive and negative voltages �see also Fig. 2�a��, which means that
the device potential �and therefore the transmission probability� dif-
fers between, for instance, �A� and �D� in the nonlinear regime
�illustrated by different orbits�. Note that, e.g., �A� and �B� give the
same orbits if the device is UD symmetric �G12�V ,B�=G12�V ,−B�,
Eq. �2��, but not if the device is lacking UD symmetry. However,
independent of the device shape of a rigid device, e.g., �A� and �G�
always give the same orbits and the same transmission probability,
G12�V ,B�=G21�−V ,B� �see Eq. �10��.
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G12�V,B� = G12�− V,− B� �11�

is fulfilled. This relation holds regardless of the UD symme-
try of a device. Note that it is important to keep track of the
sign of B in finite magnetic field.

For a nonrigid device there is no simple relation between
the bottom and top rows of Fig. 3, and no general relation
exists for a device of arbitrary shape. However, for a non-
rigid, LR symmetric device, Eq. �7� becomes, in finite mag-
netic fields,

G12�V,B� = G21�V,− B� . �12�

Describing this in words, to obtain the same conductance
upon reversal of the grounding configuration, one needs to
change the direction of the magnetic field.

It should also be noted that a perfectly UD-symmetric
device will be UD symmetric even if it is nonrigid. The
applied bias changes the effective gate voltage along the cur-
rent direction giving LR asymmetry, but it is changed by the
same amount for the upper and lower gates and does not
introduce any UD asymmetry in UD-symmetric devices.
Thus, Eq. �2�, G12�V ,B�=G12�V ,−B�, is fulfilled for both
rigid and nonrigid, UD-symmetric devices, independent of
whether they are LR symmetric or not.

Table I summarizes the symmetry relations �1� and �12�.

C. Differential conductance

So far we have discussed the symmetry relations for the
conductance, defined as G= I /V. However, in experiments
usually the differential conductance g=�I /�V is measured.

We will now show that the differential conductance obeys
the same symmetry relations as the conductance. Let us start
by showing that if G�V ,B� is symmetric in V, then also
g�V ,B� is symmetric in V. We expand

G�V,B� = �
n

c2n�B�V2n, �13�

where all coefficients cn are independent of V and all the odd
terms equal zero as a result of the assumed symmetry in V.
This yields

I�V,B� = G�V,B�V = �
n

c2n�B�V2n+1 �14�

and

g�V,B� =
�I�V,B�

�V
= �

n

c2n�B��2n + 1�V2n. �15�

Hence, the differential conductance g�V ,B� is symmetric in
V if G is symmetric in V.

Similarly, by expanding G in B, it can be shown that
g�V ,B� is symmetric in B if G�V ,B� is symmetric in B. Also,
it follows that if the conductance is antisymmetric in V or B,
the differential conductance is antisymmetric as well. It can
be concluded that the differential conductance fulfills the
symmetry relations derived for the conductance in Sec. II B.

D. Comparing the degree of asymmetry

We are interested in quantifying the degree of asymmetry
of the nonlinear conductance in quantum dots with different
intentional symmetries. The simplest way to do this is to
directly measure the dot’s differential conductance as a func-
tion of B or V. This approach is employed in Sec. IV A and
allows for effective verification of expected symmetry rela-
tions for a specific device.

A more advanced approach is useful if we want to com-
pare the amount of nonsymmetry present in two different
devices. As the nonsymmetric nonlinear conductance in our
asymmetric devices is due to quantum interference
effects,20,21 the asymmetry will differ as a function of Fermi
energy and magnetic field. Hence, if we compare the degree
of asymmetry for different devices, statistics for at least one
of these parameters are needed in order to quantify the asym-
metry induced by the devices.

A convenient way of obtaining statistics about LR sym-
metry is to measure the net current

Inet = 0.5�I�V0� + I�− V0��

= 0.5��
0

V0

g�V�dV + �
0

−V0

g�V�dV	
= 0.5�

0

V0

dV�g�V� − g�− V�� �16�

generated by a square-wave voltage signal of amplitude V0,
referred to as the rocking amplitude. This is the antisymmet-
ric part of the differential conductance summed up over the
voltage range �0, ±V0�. Thus, the net current directly pro-
vides us with a measure of the degree of asymmetry in V of
the nonlinear conductance. To be able to quantitatively com-

TABLE I. A summary of the symmetry relations valid in the nonlinear regime for rigid and non rigid
devices of different spatial symmetry.

UD, not LR LR, not UD Arbitrary shape

Rigid G�V ,B�=G�V ,−B� G�V ,B��G�V ,−B� G12�V ,B�=G21�−V ,B�
G�V ,B��G�−V ,−B� G�V ,B�=G�−V ,−B�

G12�V ,B�=G21�−V ,B� G12�V ,B�=G21�−V ,B�

Nonrigid G�V ,B�=G�V ,−B� G�V ,B��G�−V ,−B�
G12�V ,B�=G21�V ,−B�

SYMMETRY OF MAGNETOCONDUCTANCE FLUCTUATIONS¼ PHYSICAL REVIEW B 73, 235321 �2006�

235321-5



pare the asymmetry generated by different rocking ampli-
tudes V0, we define the normalized net current N by

N�V0� =
Inet

V0
=

0.5

V0
�

0

V0

dV�g�V� − g�− V�� . �17�

The normalized net current can be measured directly as a
function of Fermi energy or magnetic field. Measuring N as a
function of one parameter, such as the magnetic field, thus
corresponds to averaging over bias voltage and magnetic
field, in a single measurement—a highly efficient measure-
ment method.

In order to distinguish between devices with and without
LR symmetry, we define NLR=0.5�N12−N21�. From Eqs. �17�
and �9� we obtain

NLR�V0� = 0.5�N12�V0� − N21�V0��

=
0.5

V0
�

0

V0

dV�gr
A�V� − gr

A�− V� + 0 + �gx�V��

= Nr�V0� + �Nx�V0� , �18�

where �gx�V�=0.5�gx
12�V�−gx

12�−V�−gx
21�V�+gx

21�−V��.
Here, �gx�V� and �Nx�V� represent the contribution to the
nonlinear conductance without symmetry relations. Note that
CIA of a LR symmetric device does not contribute to NLR.

In the presence of a magnetic field we define

NLR�V0,B� = 0.5�N12�V0,B� − N21�V0,− B��

=
0.5

V0
�

0

V0

dV��gr�V,B� + 0 + �gx�V,B�� ,

�19�

where �gr
12�V ,B�=gr

12�V ,B�−gr
12�−V ,B�−gr

21�V ,−B�
−gr

21�−V ,−B�. Any CIA in a LR-symmetric device is sub-
tracted and does not contribute to NLR�V0 ,B�. NLR�V0 ,B� will
be used to compare the degree of asymmetry induced by
devices with and without LR symmetry. The magnitude of
NLR will give a measure of the asymmetry of the nonlinear
conductance.

We will also use the normalized net current to investigate
whether the devices are UD symmetric with respect to the
induced asymmetry of the nonlinear conductance. This tech-
nique does require some lack of LR symmetry in the device
so that a net current is obtained. In Sec. II B we noticed that
circuit asymmetry will not introduce any UD asymmetry in a

perfectly UD-symmetric sample. Hence, we will use N12 to
investigate the devices with respect to UD symmetry. From
Eqs. �2� and �17� it follows that also the normalized net
current will be symmetric in B for a UD-symmetric device. It
is the degree of symmetry in B of N12 which tells us about the
degree of UD symmetry of the device.

III. EXPERIMENTAL DETAILS

A. Devices

The devices used in this work were fabricated from
modulation-doped GaAs/AlGaAs heterostructures and InP/
GaInAs heterostructures, using electron-beam lithography
followed by either wet etching or metal evaporation to pro-
duce split gates. We show results from six different quantum
dots: four equilateral triangles �denoted T1, T2, T3, and T4�,
one rectangle �denoted R�, and one structure with neither UD
nor LR symmetry �denoted C�. An overview of the device
parameters is given in Table II, and the device geometries are
shown in Fig. 4.

Triangle T1 and rectangle R were fabricated from
modulation-doped GaAs/AlGaAs material. The two-
dimensional electron gas �2DEG� was located 90 nm below
the surface and had a carrier density of 2.5�1015 m−2 and a
mobility of 125 m2/ �V s�. These devices were defined by
shallow wet etching. They were covered with a top gate,
which was separated from the device surface by an approxi-
mately 1-�m resist layer and which was used to change the
Fermi energy. T1 was equilateral �sidelength s=2 �m� with
one contact opening in the middle of the base and the other

TABLE II. A summary of the devices discussed in the text. All triangular devices used are equilateral with
sidelength s.

Device Shape Symmetries Size ��m� T �K� Material Confinement Top gate

T1 Triangle UD s=2.0 0.3 GaAs/AlGaAs Etched Yes

R Rectangle UD, LR 1.7�2.0 0.3 GaAs/AlGaAs Etched Yes

T2 Triangle UD s=2.6 0.03 GaAs/AlGaAs Split gate No

C 1.6�10 0.03 GaAs/AlGaAs Split gate No

T3 Triangle UD s=1.0 0.3 InP/ InGaAs Etched Yes

T4 Triangle LR s=1.0 0.3 InP/ InGaAs Etched Yes

FIG. 4. Illustration of the device geometries. See text and Table
II for details.
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one in the opposite corner, as shown in Fig. 4. R had a width
of 1.7 �m and a height of 2.0 �m, and the contact openings
were positioned symmetrically as shown in Fig. 1. For these
devices, �g /�Vg�3 �e2 /h� /V.

Triangle T2 and device C were fabricated from
modulation-doped GaAs/AlGaAs material with the 2DEG
located 80 nm below the surface, with a carrier density of
2.1�1015 m−2 and a mobility of 70 m2/ �V s�. They were
defined with split gates. Six gates were used to define the
triangle: one pair to form each of the two quantum point
contacts �QPC’s� and one pair defining the central part of the
triangle �s=2.6 �m; cf. Fig. 4�. Device C was an open struc-
ture defined by five gates: two pairs defining the QPC’s sepa-
rated by a distance of 1.6 �m and the fifth rectangular gate
defining a wall parallel to the current axis, positioned 0.8 �m
below the QPC’s. There was no gate opposite to the fifth
gate; hence, the width of this structure was given by the
mesa—i.e., approximately 10 �m. This structure was not
UD symmetric. In general, different gate voltages were ap-
plied to the two QPC’s and the device was not LR symmet-
ric. For these devices, �g /�Vg�20 �e2 /h� /V.

The triangular dots T3 and T4 were fabricated from
modulation-doped InGaAs/ InP material,41,42 with the
9-nm-thick quantum well located 40 nm below the surface.
The carrier density was 7.7�1015 m−2 and the mobility was
45 m2/ �V s�. We expect CIA to be important when the varia-
tion of the conductance with gate voltage is comparable to
other nonlinear effects—that is, when �g /�Vg��g /�V. Be-
cause the InP/ InGaAs devices were defined by deep wet
etching rather than by surface gates and because a Ti/Au top
gate used to tune the carrier concentration was separated
from the quantum well by a 1-�m layer of insulating poly-
mer, �g /�Vg�0.6 �e2 /h� /V was one to two orders of mag-
nitude smaller than in typical, surface-gated GaAs/AlGaAs
devices. It may also be important that wet-etched InP/
InGaAs dots have been found to have a substantially ohard-
ero �steeper� confinement potential than GaAs/AlGaAs
devices,43 again reducing the sensistivity of the dot conduc-
tance to small changes in the gate voltage. Both T3 and T4
had side length 1.0 �m, but the contact openings were posi-
tioned such that T3 was UD symmetric and T4 was LR sym-
metric �see Fig. 4�.

For all devices considered here the cross-sectional area is
of order �m2, such that the magnetic field corresponding to
one flux quantum is of order mT. The Thouless energy for all
devices is of order 10 �eV. The devices T1, R, T3, and T4
were measured at T=0.3 K in a 3He cryostat at base tem-
perature 230 mK. The split-gated devices T2 and C were
measured in a dilution refrigerator with a base temperature of
30 mK.

B. Experimental methods

For measurements of the two-terminal conductance in the
linear response regime, we used separate current and voltage
probes in a four-point geometry, with an excitation voltage
eVac�kBT �25 �eV at T=300 mK�. The measurements
of the differential conductance in nonlinear response were
carried out by adding a dc component to the small ac signal.

For direct measurement of the net current,34,44 we used a
191-Hz, symmetric square wave with amplitude V0 �also re-
ferred to as the rocking amplitude�, which was 100% ampli-
tude modulated with a frequency of 17 Hz. This means that a
square-wave bias was applied during half of the longer pe-
riod and no bias was applied during the other half. The time-
averaged net current was then detected using a lock-in am-
plifier, phase-locked to the slower modulation frequency. The
modulation frequency was always kept above 10 Hz to avoid
distortion of the applied wave, and the rocking frequency
was kept below 1 kHz to avoid any high-frequency effects.
Under these conditions the results were not sensitive to the
chosen frequencies and the system could be considered to be
in a steady state at all times, because the rocking frequency
was slow compared to all electronic time scales. To observe
symmetry relations, it is necessary to have a symmetric ex-
perimental setup, with equal voltage drops on each side of
the device. To achieve this, all series resistances in the setup,
including Ohmic contacts and the cryostat wiring, were mea-
sured and compensated to be symmetric with respect to the
device �see Fig. 2�b��. We also verified that there were no
other rectifying contributions, such as imperfect Ohmic con-
tacts. Finally, we also checked that no net current was ob-
tained if we replaced the device with an Ohmic resistor for
test purposes. The drain reservoir was used as the reference
point of the split gates and the top gates. All values for
source-drain bias voltages given in the following refer to the
voltage drop over the device itself.

Note that in principle it is possible to minimize CIA ef-
fects in surface-gated devices by using as a reference point
for the gate voltage a point that is kept at a potential halfway
between the source and drain, using a voltage divider.44,45

However, the present work aimed at establishing symmetry
relations in the presence of CIA effects and results obtained
with minimized CIA are reported elsewhere.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Direct measurement of the symmetry relations

In this section, we will investigate the symmetry relations
by direct conductance measurements for the InP/ InGaAs tri-
angles T3 and T4 �top gate voltage zero�. We begin by es-
tablishing the behavior of the devices in the linear response
regime. The upper curve in Fig. 5 shows magnetoconduc-
tance measurements in linear response for triangle T4.
Quickly varying conductance fluctuations, due to electron
wave interference, are overlaid on a slowly varying back-
ground, which can be related to classical commensurability
effects.5 The rms value of the conductance fluctuations is
about 0.1e2 /h, which is a typical value for quantum dots of
similar size, measured at 0.3 K. The conductance fluctua-
tions are of the same order of magnitude for all devices. Note
that the conductance fluctuations are almost perfectly sym-
metric in B, as expected in the linear response regime where
G�	�B�=G�	�−B� �cf. Sec. II A�.

Figure 6 shows the magnetoconductance measurements in
the nonlinear response regime for the triangle T3, which is
UD symmetric but not LR symmetric, for all configurations
shown in Fig. 3, V= ±0.8 mV �1 mV over the whole circuit�.
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The first thing to note, by comparing Fig. 6�a� with 6�b� and
Fig. 6�c� with 6�d�, is that the nonlinear conductance is non-
symmetric in V.

One can show that this nonsymmetry is not induced by
the circuit, but by the absence of LR symmetry in the device.
For a rigid device, the relation G12�V ,B�=G21�−V ,B� �Eq.
�10�� is upheld for any device of arbitrary shape. Significant
CIA should, however, break this symmetry. Noting the strong
similarity of, for instance, curves �B� and �E� in Fig. 6, it can
be concluded that CIA is negligible compared to the effect of
the intentional asymmetry in this particular device. In other
words, this InP/ InGaAs device is rigid.

For a perfectly UD-symmetric device, we expect that
g�V ,B�=g�V ,−B� regardless of the amount of CIA �see
Table I�. The graphs in Fig. 6 have been grouped such that
each pair of graphs in each of the subfigures allows a check
of this symmetry relation, for either positive or negative bias
voltage and in either forward or reverse grounding configu-
ration. Hence, comparing the two curves in the same graph
gives a direct measure of the degree of UD symmetry. Over-
all the agreement between each pair is remarkably good,
even though small deviations, not related to measurement
noise, are apparent.

The deviations from expected symmetries caused by the
effect of �i� the CIA, �ii� the deviations from UD symmetry,
and �iii� the lack of LR symmetry are quantified in the inset
of Fig. 6�a�. This is done by integrating the absolute value of
the difference between those curves that should be identical
according to the relevant symmetry relations:

A�B� = �
0

B

dB
�gdif f
n �� . �20�

Here, gdif f is given by �i� gdif f =g12�V ,B�−g21�−V ,B�, which
in the absence of any measurement noise should equal zero
for rigid devices of any shape, �ii� gdif f =g�V ,B�−g�V ,−B�,
which should equal zero for perfectly UD-symmetric de-
vices, and �iii� gdif f =g�V ,B�−g�−V ,−B�, which should equal
zero for rigid, perfectly LR-symmetric devices. For each case
�i�–�iii�, the result of the integral is averaged for all four
relevant combinations giving gdif f �e.g., A-F, B-E, C-H, and
D-G for case �i�� and the average is shown in the inset. The
result shows that the intentional deviation from LR symme-
try causes the largest differences, the unintentional deviation
from UD symmetry causes smaller deviations, and CIA
causes the smallest deviations, confirming what is also ap-
parent from direct observation.

In Fig. 5 we show magnetoconductance fluctuations mea-
sured in the nonlinear regime for the LR symmetric triangle
T4, V=1.6 mV �2 mV over the whole circuit�. Crucially, as
expected for a device lacking UD symmetry, one finds that
G�V ,B��G�V ,−B� for finite V. However, according to Eq.
�11� we expect g�V ,B�=g�−V ,−B� if CIA can be neglected.
Indeed, the expected symmetry relation can be observed, for
instance by comparing the marked features.

To summarize this section, we have shown, by direct
magnetoconductance measurements on the triangles T3 and
T4 fabricated from InP/InGaAs material, that we can re-
cover all the symmetry relations expected from the inten-
tional device symmetries for rigid devices. In particular, the
symmetry in B for the UD-symmetric device indicates that
the role of imperfections of the device geometry is small.

B. Net current measurements

We will now use net current measurements to investigate
the symmetry of the GaAs/AlGaAs devices. Three points
should be made. First, the measurement of a net current re-
quires the presence of some LR asymmetry; otherwise, there
would be no signal. Second, the net current measurements of
the GaAs/AlGaAs devices show a significant CIA effect,
because in these devices the conductance varied much faster
with gate voltage than in the InP/ InGaAs devices. Also, as
we are only tracing the small part of the conductance being
antisymmetric in V, it is much more sensitive to all kind of
deviations, such as CIA or imperfections. Here, we will
mainly present results for the triangles and, unless otherwise
indicated, we show results from triangle T1. We begin by
asking whether the triangles are UD symmetric, as measured
by the net current fluctuations.

1. Basic results

In Fig. 7 we show measurements of the normalized net
current as a function of magnetic field for both forward and
reverse grounding configurations—that is, N12 and N21 �cf.
Eq. �17��. The rocking amplitude V0 was 1 mV. The net cur-
rent varies as a function of magnetic field, and both positive
and negative net currents are obtained. The magnetic field

FIG. 5. Magnetoconductance of the LR-symmetric triangle T4.
Upper curve: zero-bias and linear response regime. Note the almost
perfect symmetry in B, which is expected for linear response.
Lower curves: nonlinear response with V= ±1.6 mV. The symmetry
in B is broken, which is evident by comparing the features inside
the thin circles and rectangles at +0.3 T or −0.3 T. However, by
comparing the features inside the two circles �or alternatively the
rectangles� the symmetry relation g�V ,B�=g�−V ,−B� �see Eq. �11��
becomes apparent.
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scale of the current oscillations is similar to the scale of the
conductance fluctuations, indicating that the main contribu-
tion to the rectification is due to quantum interference ef-
fects, as described in Ref. 20. We observe that there is a shift
between the data obtained in the two grounding configura-

tions, but qualitatively they are very similar. Basically all
maxima and minima can be seen in both measurements. The
small difference between N12 and N21 means that some CIA
is present. However, in the following section we will focus
on UD symmetry, which is not expected to be affected by

FIG. 6. �Color online� Magne-
toconductance of the UD-
symmetric triangle T3 in the non-
linear regime. Each figure shows
graphs for positive and negative
magnetic fields in different
grounding configurations. �a�
shows g12�+V , ±B�, �b� shows
g12�−V , ±B�, �c� shows
g21�+V , ±B�, and �d� shows
g21�−V , ±B� �V=0.8 mV�. Inset:
the quantified, normalized devia-
tions A�B� in arbitrary units �Eq.
�20�� from the expected symmetry
relations caused by �i� the CIA,
�ii� the deviations from UD sym-
metry, and �iii� the lack of LR
symmetry are shown here. A�B�
was integrated over the range
0–0.5 T.
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CIA, and we will limit ourselves to only show measurements
for one grounding configuration. In Fig. 8 we show measure-
ments of the normalized net current taken at different top
gate voltages �Fermi energies�. While all curves show oscil-
lations of approximately the same amplitude and period, the
oscillations are essentially uncorrelated for the different gate
voltages. This observation is consistent with the origin of the
fluctuations being quantum interference.

2. UD symmetry

For a perfectly UD-symmetric device, the induced net
current would be symmetric in B, as stated in Eq. �2�. Some
of the curves in Figs. 7 and 8 are relatively symmetric for
small magnetic fields, while others are more or less antisym-
metric. Neither of them are fully symmetric in the entire
range shown. The dotted line in Fig. 7 shows the left half
of N12�B� mirrored around the zero-magnetic-field axis. A
comparison between the dotted line and N12�B� gives a direct
visual comparison of N12�B� and N12�−B�. They are not iden-
tical, but there is a clear correlation up to about 50 mT: the
maxima and minima appear at approximately the same posi-
tive and negative fields. Another way of studying the sym-
metry in B is to divide the curves into their symmetric
and antisymmetric parts, NS=0.5�N�B�+N�−B�� and
NA=0.5�N�B�−N�−B��, respectively. This is done in Fig. 9,
which shows the symmetric and antisymmetric parts of the
measurements shown in Fig. 8. The antisymmetric part in B
should equal zero for a perfectly UD-symmetric device �cf.
last paragraph of Sec. II B�. The finite values of the antisym-
metric part of the net current in Fig. 9�b� indicate that the
device is not fully UD symmetric.

In Fig. 10 we compare the symmetry in B for three dif-
ferent structures: the two nominally UD-symmetric triangles
T1 and T2 and device C without UD symmetry. In order to
generate a net current we use different split-gate voltages for
the two QPC’s of device C, breaking the LR symmetry of the
device. We expect the net current of the UD-symmetric tri-
angles to be symmetric in B, while there is no reason for the
net current generated by device C to be symmetric in B.
Neither of the curves is fully symmetric in B, but while there
indeed is a correlation between N�B� and N�−B� for the tri-
angles, for magnetic fields smaller than approximately
50 mT, there is no such correlation for device C.

We have also studied the asymmetry at various rocking
amplitudes. Quantum interference effects are washed out at a
bias exceeding a few mV, because of heating effects and
because of phase breaking due to inelastic electron-electron
scattering.31,46–48 Thus, we expect that any net current per-
sisting, or developing, at a high bias �rocking amplitude�
must be of an origin other than wave interference. Figure 11
shows the symmetric and antisymmetric parts of the normal-
ized net current for increasing rocking amplitude and for
constant top gate voltage. The curves in Fig. 11�b� are verti-
cally offset by 0.01e2 /h, and the horizontal lines correspond
to the zero lines for the different curves. The amplitude of
the fast oscillations with a period of 10–20 mT decreases
with increased bias voltage. At V0
2 mV the net current
oscillations have basically vanished, which is consistent with
the fact that the fast magnetoconductance fluctuations are
totally washed out at this rocking amplitude in this device. A
large symmetric part evolves at high rocking amplitudes, and
a smaller antisymmetric part remains as well. The gross fea-
tures which remain at higher rocking amplitudes change
slowly with gate voltage �Fermi energy� and are correlated
for different Fermi energies �not shown here�. As the triangle
is not LR symmetric we expect that it exhibits asymmetric
nonlinear behavior also when any quantum interference ef-
fects are washed out. This thermally averaged part is also

FIG. 7. Comparison of the normalized net current �cf. Eq. �17��
of the UD-symmetric triangle T1 measured with the device in for-
ward grounding configuration �N12, thick solid line� and reversed
configuration �N21, thin solid line�, with a rocking amplitude of
V0=1 mV. The curves are not identical, but qualitatively very simi-
lar with maxima and minima at the same fields. Note that the net
current is not symmetric with respect to zero magnetic field. The
dotted line shows N12�B� mirrored around the B=0 axis—i.e.,
N12�−B�—for a direct comparison of the asymmetry in B.

FIG. 8. Normalized net current N12 of triangle T1 as a function
of magnetic field, where the different curves are measured at vari-
ous gate voltages �Fermi energies�. From top down at B=0,
Vg=−1.2,0 ,−3.4,−2.7,−1.9 V, corresponding to �F=7.9,8.5,6.8,
7.2,7.6 meV �V0=1 mV�.
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likely to increase with increased bias voltage and should not
depend as sensitively on the Fermi energy �top gate voltage�.
Hence, the observations are in agreement with our expecta-
tions.

C. Does an intentionally LR-symmetric device generate less
net current than a device lacking LR symmetry?

It can be expected that an intentionally LR-symmetric de-
vice is not perfectly symmetric on a microscopic scale. Is an
intentionally symmetric quantum dot, such as R, more sym-
metric than an intentionally asymmetric quantum dot, such
as T1? We ask this question with respect to the induced
asymmetry of the phase-coherent, nonlinear, conductance
fluctuations. For the rigid devices shown in Sec. IV A, based
on InP/ InGaAs, the answer to this question is a clear “yes”

�Figs. 5 and 6�. Here we pose the question, is this true for
devices fabricated from another, less rigid, material system
�GaAs/AlGaAs� as well? In order to compare the degree of
asymmetry of different devices, we need to average over
Fermi energy or magnetic field for specific, fixed bias volt-
ages.

To remove contributions to the asymmetric conductance
that are due to CIA and that are not related to any broken LR
symmetry of the device, we follow the procedure outlined
in Eqs. �18� and �19� and determine the difference of
net currents measured in the two configurations:
NLR�V ,B�=0.5�N12�V ,B�−N21�V ,−B��. After this treatment,
we indeed still observe a nonzero net current, which then
must be related to deviations from LR symmetry in the de-
vice. To obtain statistics allowing us to quantify the amount
of LR symmetry in the devices, we average NLR over a suf-
ficiently large magnetic-field range. To choose a suitable
range, we note in Fig. 11 that the period of the net current
fluctuations changes at approximately 100 mT. Therefore,
we have chosen to use ��NLR�, the standard deviation of
NLR�B�, in the range −100�B� +100 mT, as a parameter. It
is well known that the amount of quantum interference ef-
fects differs for various devices. For this reason, to quantify
the asymmetry, we use ��NLR� /���G�, which is the ratio of
the standard deviation of the normalized net current and the
standard deviation of the conductance fluctuations measured
without bias. In Fig. 12, this ratio is plotted as a function of
top gate voltage �Fermi energy�. Clearly, we see that the
induced asymmetry of the triangle is larger than for the rect-
angle. If we define the ratio r of the asymmetry induced by
the triangle and the rectangle as

FIG. 9. Separation of the N12�B� curves of triangle T1 in Fig. 8,
into contributions that are �a� symmetric NS and �b� antisymmetric
NA with respect to B=0 �V0=1 mV�. Specifically,
NS=0.5�N�B�+N�−B�� and NA=0.5�N�B�−N�−B��. For perfectly
UD-symmetric devices one would expect the traces in �b� to be
identical to zero. The finite values of the curves indicate that there is
some UD asymmetry. The curves in �a� have finite values because
of the �intended� LR asymmetry. Curves measured at the same top
gate voltage are plotted with equal line type in both graphs of this
figure and in Fig. 8.

FIG. 10. Normalized net current N12 for three different devices
as a function of B, with V0=0.5 mV. The devices are the UD-
symmetric split-gated triangle T2, the UD-symmetric wet-etched
triangle T1, and the split-gated device C without UD symmetry. The
curves are vertically offset for clarity. The dotted curves are mir-
rored around B=0. Thus, the right half of the graph gives a direct
comparison between N12�B� and N12�−B�.
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r =
��Ntri

LR�/���Gtri�
��Nrect

LR �/���Grect�
, �21�

we get the following numbers: r=4.4 for Vg=0 V and
r=4.8 for Vg= �0,3.5� V. Rather than comparing the asym-
metry at similar gate voltage, it would also be meaningful
to compare them as a function of conductance, which gives
r=1.7 for G= �4,10�e2 /h. Thus, r
1 in any interval and it
can be concluded that the triangle is more asymmetric than
the rectangle with regard to the induced net current in the
nonlinear conductance.

It is interesting to note that the symmetric and antisym-
metric parts of the net current are different for the triangle T1
and the rectangle R. Because T1 lacks LR symmetry, but is
intentionally UD symmetric, we expect that the symmetric
part is larger than the antisymmetric part for the triangle T1.
However, for the rectangle, which is nominally both LR and
UD symmetric, there is no reason for one being larger than
the other. Indeed, for the triangle, the ratio between the stan-
dard deviation of the symmetric and antisymmetric parts is

2.0, while it is 1.2 for the rectangle, confirming the expecta-
tion.

V. SUMMARY AND CONCLUSIONS

We have established symmetry relations for the nonlinear
conductance of quantum dots with no, one, or two symmetry
axes, taking into account the magnetic field and distinguish-
ing nonrigid devices that show circuit-induced asymmetry
and rigid devices that do not. All established symmetry rela-
tions are based on fundamental symmetry arguments and are
expected to hold in the classical regimes as well as in the
quantum regimes, regardless of the nature of the physical
mechanism that causes the conduction asymmetry. Because it
is in praxis not possible to fabricate a device that is perfectly
symmetric on a microscopic scale, we experimentally inves-
tigated whether the expected symmetry relations can be ob-
served in the regime of phase-coherent transport. One of the
questions asked is, which of the expected symmetries, with
respect to magnetic field direction, bias voltage, and ground-
ing configuration, can indeed be observed? Another way of
asking the same question is, how much geometric asymmetry
is needed to generate rectification, and is the intended device
geometry significant in comparison to unintended imperfec-
tions of the geometry?

Measurements of the nonlinear conductance in electron
billiards that were defined by wet etching in InP/ InGaAs
material revealed all the symmetry relations expected for
rigid devices of the given symmetry. Circuit-induced asym-
metry was negligible in these devices. Although small devia-
tions are observed as the result of imperfections, we con-
clude that the symmetry of the nonlinear conductance is
indeed determined by the designed device geometry.

FIG. 11. �Color online� The �a� symmetric and �b� antisymmet-
ric parts of the normalized net current N12 at different rocking am-
plitudes and constant top gate voltage for triangle T1 �Vg=−1.9 V,
�F=7.6 meV�. From top down the rocking amplitudes are
0.55 meV, 1.2 meV, 1.6 meV, 2.6 meV, and 3.6 meV. The curves
in �b� are offset and are mutually separated by 0.01e2 /h.

FIG. 12. The ratio of the standard deviation of the normalized
net current and the conductance fluctuations ��NLR� /���G� is
shown for the triangle T1 �triangles� and the rectangle R �squares�
as a function of top gate voltage �Fermi energy� ��B��100 mT�.
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Using direct measurement of the rectified net current, we
investigated the conductance symmetry in GaAs/AlGaAs
devices. This measurement technique is much more sensitive
to conductance asymmetries than a measurement of the con-
ductance, because 100% of the measured signal is due to
rectification. Using this technique, we find that the
GaAs/AlGaAs devices show appreciable CIA effects, which
we have shown how to remove from the data. The normal-
ized net current N�V ,B� is not symmetric with respect to zero
magnetic field for any of the UD-symmetric devices. How-
ever, for two of these devices �T1 and T2� we find a corre-
lation between N�B� and N�−B� for low fields up to
20–50 mT and to larger fields in some cases. For C—a de-
vice without UD symmetry—there is no such correlation.
These results show that our devices are not perfectly UD
symmetric as measured by quantum-wave interference ef-
fects. However, there is a clear difference between devices
that are intended to have UD symmetry and devices that are
designed to lack UD symmetry. The importance of the device
symmetry for the observed symmetry of nonlinear electron
transport is underlined by the observation that the LR-
symmetric device R induces much less net current than the
triangle T1.

Some open questions remain. Let us start with the sym-
metry in B in the nonlinear response regime. It is known that
generally G�V ,B��G�V ,−B� �Eq. �1��, while in the linear
response regime the symmetry in B is almost perfect for any
device of arbitrary shape.1 Here �and in Ref. 20� we point out
that this symmetry relation should be recovered for UD-
symmetric devices—that is, G�V ,B�=G�V ,−B�. We also
have a basic idea of the criteria which determine whether
a device is measured in the linear response regime or in the
nonlinear regime.47 However, full qualitative and quantita-
tive understanding of the magnitude of the asymmetry in
Eq. �1� has not yet been established. Recently, Sánchez and
Büttiker used random matrix theory to calculate the abso-
lute magnitude of the expected conductance asymmetry in
fully coherent quantum dots at T=0 as a function of the
mode number in the contacts for the case of very small volt-
ages �V�ET /e, where the Thouless energy ET is typically of
the order of 10 �eV� and for magnetic flux smaller than
�0.23 These results are consistent with work by Spivak and
Zyuzin27 on disordered systems and with recent experimental
results on carbon nanotubes24 and semiconductor quantum
dots26 for small flux and small bias voltage. Marlow et al.25

recently measured the magnitude of the lowest-order nonlin-
ear asymmetry in a magnetic field in phase-coherent electron
billiards for B��0 /A and for V
ET /e. All of these authors
find that the asymmetry in question is linear in B and V, but

quantitative comparisons between the different experiments,
and between experiment and theory, are currently difficult.
More theoretical work is needed to tie together the small
�B ,V� regime with the results obtained for large B and V and
to establish theoretical predictions that are applicable to dots
at finite temperature and with limited phase-breaking times.

Another open question concerns the symmetry in B of the
normalized net current N�V0 ,B� in the UD-symmetric tri-
angle T1. Ideally, the antisymmetric part of N�V0 ,B� would
equal zero for such a device, while the symmetric part would
take finite values. What we observe indeed is that the anti-
symmetric part of the data is consistently smaller than the
symmetric part. An observation that is not understood at
present is that in Fig. 11 the frequency of the net current
fluctuations appears to change at approximately 100 mT for
the symmetric part, while this change is not equally signifi-
cant for the antisymmetric part. Thus, the symmetric and
antisymmetric parts of the fluctuations in B seem to have
different frequencies as a function of B.

It is also not clear whether the same amount of geometric
asymmetry is needed to induce a nonsymmetric nonlinear
conductance in the phase-coherent regime compared to the
noncoherent regime. One may imagine that only small devia-
tions from a perfectly symmetric potential are needed in the
phase-coherent regime, while it is not obvious that the same
degree of deviation is sufficient to induce asymmetric con-
ductance in the high-bias regime, where phase coherence is
suppressed. If there is a difference, one would expect that for
a UD-symmetric device the part that is antisymmetric in B
would vanish at high bias. In Fig. 11 we show that the anti-
symmetric part does decrease slightly with increased bias
voltage, but does not vanish entirely. Experiments addressing
several of the open questions described above are currently
in progress.

ACKNOWLEDGMENTS

We acknowledge Ivan Maximov for technical help and
Hongqi Xu for helpful discussions. This project was sup-
ported by the Swedish Research Council, the Swedish Foun-
dation for Strategic Research, the Australian Research Coun-
cil, ONR, NSF CAREER Award No. PHY 0239764 �H.L.�,
NSF IGERT �C.A.M.�, and a travel grant from the Swedish
Institute �A.L.�. R.P.T. acknowledges the support from the
Research Corporation. The authors thank Claus B. Sørensen
and the III-V NANOLAB of MIC and NBI for the MBE
grown GaAs/AlGaAs material, and Werner Seifert for the
InP/GaInAs material.

*Electronic address: anneli.lofgren@ftf.lth.se
†Electronic address: linke@uoregon.edu
1 C. W. J. Beenakker and H. van Houten, in Solid State Physics,

edited by H. Ehrenrich and D. Turnbull �Academic Press, New
York, 1991�, Vol. 44, p. 1.

2 For a review see, e.g., J. P. Bird, J. Phys.: Condens. Matter 11,

R413 �1999�.
3 C. M. Marcus, A. J. Rimberg, R. M. Westervelt, P. F. Hopkins,

and A. C. Gossard, Phys. Rev. Lett. 69, 506 �1992�; A. M.
Chang, H. U. Baranger, L. N. Pfeiffer, and K. W. West, ibid. 73,
2111 �1994�; M. Persson, J. Pettersson, B. von Sydow, P. E.
Lindelof, A. Kristensen, and K. F. Berggren, Phys. Rev. B 52,

SYMMETRY OF MAGNETOCONDUCTANCE FLUCTUATIONS¼ PHYSICAL REVIEW B 73, 235321 �2006�

235321-13



8921 �1995�; K.-F. Berggren, Zhen-Li Ji, and Tomas Lundberg,
ibid. 54, 11612 �1996�; J. P. Bird, D. K. Ferry, R. Akis, Y.
Ochiai, K. Ishibashi, Y. Aoyagi, and T. Sugano, Europhys. Lett.
35, 529 �1996�; I. V. Zozoulenko, R. Schuster, K.-F. Berggren,
and K. Ensslin, ibid. 55, R10209 �1997�; P. Bøggild, A. Kris-
tensen, H. Bruus, S. M. Reimann, and P. E. Lindelof, ibid. 57,
15408 �1998�; I. V. Zozoulenko, A. S. Sachrajda, P. Zawadzki,
K.-F. Berggren, Y. Feng, and Z. Wasilewski, ibid. 58, 10597
�1998�; T. Blomquist and I. V. Zozoulenko, ibid. 61, 1724
�2000�.

4 H. Linke, L. Christensson, P. Omling, and P. E. Lindelof, Phys.
Rev. B 56, 1440 �1997�.

5 L. Christensson, H. Linke, P. Omling, P. E. Lindelof, I. V. Zozou-
lenko, and K.-F. Berggren Phys. Rev. B 57, 12306 �1998�.

6 R. P. Taylor, A. S. Sachrajda, J. A. Adams, P. T. Coleridge, and P.
Zawadzki, Phys. Rev. B 47, 4458 �1993�.

7 R. P. Taylor, R. Newbury, A. S. Sachrajda, P. T. Coleridge, P.
Zawadzki, R. B. Dunford, Y. Feng, J. P. Bird, C. R. Leavens, J.
M. Cadogan, J. A. Adams, P. J. Kelly, M. Davies, and S. A.
Brown, Semicond. Sci. Technol. 11, 1189 �1996�.

8 V. I. Belinicher and B. I. Sturman, Usp. Fiz. Nauk 130, 415
�1980� �Sov. Phys. Usp. 23, 199 �1980��.

9 A. Lorke, S. Wimmer, B. Jager, J. P. Kotthaus, W. Wegscheider,
and M. Bichler, Physica B 251, 312 �1998�.

10 A. M. Song, A. Lorke, A. Kriele, J. P. Kotthaus, W. Wegscheider,
and M. Bichler, Phys. Rev. Lett. 80, 3831 �1998�.

11 A. M. Song, Phys. Rev. B 59, 9806 �1999�.
12 B. Hackens, L. Gence, C. Gustin, X. Wallart, S. Bollaert, A.

Cappy, and V. Bayot, Appl. Phys. Lett. 85, 4508 �2004�.
13 A. M. Song, P. Omling, L. Samuelson, W. Seifert, I. Shorubalko,

and H. Zirath, Appl. Phys. Lett. 79, 1357 �2001�.
14 H. Linke and A. M. Song, in Electron Transport in Quantum

Dots, edited by J. P. Bird �Kluwer, Dordrecht, 2003�.
15 R. A. Webb, S. Washburn, and C. P. Umbach, Phys. Rev. B 37,

8455 �1988�.
16 S. B. Kaplan, Surf. Sci. 196, 93 �1988�.
17 P. A. M. Holweg, J. A. Kokkedee, J. Caro, A. H. Verbruggen, S.

Radelaar, A. G. M. Jansen, and P. Wyder, Phys. Rev. Lett. 67,
2549 �1991�.

18 D. C. Ralph, K. S. Ralls, and R. A. Buhrman, Phys. Rev. Lett. 70,
986 �1993�.

19 R. Taboryski, A. K. Geim, M. Persson, and P. E. Lindelof, Phys.
Rev. B 49, R7813 �1994�.

20 H. Linke, W. D. Sheng, A. Svensson, A. Löfgren, L. Christens-
son, H. Q. Xu, P. Omling, and P. E. Lindelof, Phys. Rev. B 61,
15914 �2000�.

21 H. Linke, W. D. Sheng, A. Löfgren, H. Q. Xu, P. Omling, and P.
E. Lindelof, Europhys. Lett. 44, 341 �1998�.

22 A. Löfgren, C. A. Marlow, I. Shorubalko, R. P. Taylor, P. Omling,
L. Samuelson, and H. Linke, Phys. Rev. Lett. 92, 046803
�2004�.

23 D. Sánchez and M. Büttiker, Phys. Rev. Lett. 93, 106802 �2004�.
24 J. Wei, M. Shimogawa, Z. Wang, I. Radu, R. Dormaier, and D. H.

Cobden, Phys. Rev. Lett. 95, 256601 �2005�.
25 C. A. Marlow, R. P. Taylor, M. Fairbanks, I. Shorubalko, and H.

Linke, Phys. Rev. Lett. 96, 116801 �2006�.

26 D. M. Zumbühl, C. M. Marcus, M. P. Hanson, and A. C. Gossard,
Phys. Rev. Lett. 96, 206802 �2006�.

27 B. Spivak and A. Zyuzin, Phys. Rev. Lett. 93, 226801 �2004�.
28 L. A. Ponomarenko, D. T. N. de Lang, A. de Visser, V. A. Kul-

bachinskii, G. Künzel, and A. M. M. Pruisken, Solid State Com-
mun. 130, 705 �2004�.

29 E. Peled, Y. Chen, E. Diez, D. C. Tsui, D. Shahar, D. L. Sivco,
and A. Y. Cho, Phys. Rev. B 69, 241305�R� �2004�.

30 B. Karmakar, M. R. Gokhale, A. P. Shah, B. M. Arora, D. T. N.
de Lang, A. de Visser, L. A. Ponomarenko, and A. M. M.
Pruisken, Physica E �Amsterdam� 24, 187 �2004�.

31 S. Datta, Electronic Transport in Mesoscopic Systems, Vol 3 of
Cambridge Studies in Semiconductor Physics and Microelec-
tronic Engineering �Cambridge University Press, Cambridge,
England, 1995�.

32 B. L. Al’tshuler and D. E. Khmel’nitski�, Pis’ma Zh. Eksp. Teor.
Fiz. 42, 291 �1985� �Sov. Phys. JETP 42, 359 �1985��.

33 A. I. Larkin and D. E. Khmel’nitski�, Zh. Eksp. Teor. Fiz. 91,
1815 �1986� �Sov. Phys. JETP 64�, 1075 �1986�; Phys. Scr.
T14, 4 �1986�.

34 H. Linke, T. E. Humphrey, A. Löfgren, A. O. Sushkov, R. New-
bury, R. P. Taylor, and P. Omling, Science 286, 2314 �1999�.

35 M. Büttiker, Phys. Rev. Lett. 57, 1761 �1986�.
36 M. Büttiker, IBM J. Res. Dev. 32, 317 �1988�.
37 L. P. Kouwenhoven, B. J. van Wees, C. J. P. M. Harmans, J. G.

Williamson, H. van Houten, C. W. J. Beenakker, C. T. Foxon,
and J. J. Harris, Phys. Rev. B 39, 8040 �1989�.

38 L. Martín-Moreno, J. T. Nicholls, N. K. Patel, and M. Pepper, J.
Phys.: Condens. Matter 4, 1323 �1992�.

39 A. Kristensen, H. Bruus, A. E. Hansen, J. B. Jensen, P. E. Linde-
lof, C. J. Marckmann, J. Nygård, S. B. Sørensen, F. Beuscher, A.
Forchel, and M. Michel, Phys. Rev. B 62, 10950 �2000�.

40 Another way of avoiding this contribution is to set the reference
point of the gate to half of the applied bias. This approach was
not employed because it introduced significant noise in the mea-
surements.

41 P. Ramvall, N. Carlsson, P. Omling, L. Samuelson, W. Seifert, M.
Stolze, and Q. Wang, Appl. Phys. Lett. 68, 1111 �1996�.

42 I. Maximov, Q. Wang, M. Graczyk, P. Omling, L. Samuelson, W.
Seifert, and I. Shorubalko, in Proceedings of 11th Internattional
Conference on InP and Related Materials, Davos, 1999 �Insti-
tute of Electrical and Electronics Engineers, Davos, Switzerland,
1999�, p. 237.

43 T. P. Martin, R. P. Taylor, H. Linke, C. A. Marlow, G. D. R. Hall,
I. Shorubalko, I. Maximov, W. Seifert, L. Samuelson, and T. M.
Fromhold, Superlattices Microstruct. 34, 179 �2003�.

44 A. Löfgren, Ph.D. thesis, Lund University, 2002.
45 T. E. Humphrey, Ph.D. thesis, University of New South Wales,

Sydney, Australia, 2003.
46 H. Linke, J. P. Bird, J. Cooper, P. Omling, Y. Aoyagi, and T.

Sugano, Phys. Rev. B 56, 14937 �1997�.
47 H. Linke, H. Q. Xu, A. Löfgren, W. D. Sheng, A. Svensson, P.

Omling, P. E. Lindelof, R. Newbury, and R. P. Taylor, Physica B
272, 61 �1999�.

48 M. Switkes, A. G. Huibers, C. M. Marcus, K. Campman, and A.
C. Gossard, Appl. Phys. Lett. 72, 471 �1998�.

LÖFGREN et al. PHYSICAL REVIEW B 73, 235321 �2006�

235321-14


